On Higher-Dimensional Soul Perturbations via Higgs-Photon Couplings

Peter De Ceuster

August 1, 2025

Abstract

We propose an extension of the photon soul theorem to higher-dimensional geometries where the electromagnetic field acquires novel topological couplings to the Higgs sector. In four-dimensional spacetime, electroweak symmetry breaking leaves the photon massless and its cohomological soul invariant. We demonstrate that in a D>4 bulk or derived-stack context, nontrivial morphisms in the derived category of sheaves can induce Higgs-photon soul deformations that vanish under naive dimensional reduction but leave calculable imprints on low-energy interference phenomena. We provide precise cohomological constructions, compute obstruction classes, and derive phenomenological bounds on measurable visibility shifts.

1 Introduction

The photon soul theorem (PST) identifies a minimal cohomological subspace

$$S(P) \subset H^{\bullet}(X)$$

associated to a photon sheaf P on a four-dimensional site X, invariant under any categorical lift $\Phi: D(P) \to D(P')$. Standard electroweak theory implements the symmetry-breaking map

$$SU(2)_L \times U(1)_Y \xrightarrow{\langle H \rangle} U(1)_{em},$$

yielding massive W^{\pm} , Z bosons while preserving an exact massless photon. Consequently, S(P) remains untouched by the Higgs vacuum expectation value (VEV).

Here we investigate whether higher-dimensional topology or derived geometry can introduce a nontrivial Higgs-photon soul coupling without spoiling four-dimensional masslessness. We construct explicit pushforward and pullback functors in a fibration $\pi: Y \to X$ and identify obstruction classes in $\operatorname{Ext}^p(\pi^*P, H)$ that control soul deformations.

2 Cohomological Construction

2.1 The Photon Soul in 4D

Let X be a smooth projective variety (or site) of complex dimension n = 2. The photon sheaf $P \in \text{Shv}(X)$ yields a hypercohomology spectral sequence

$$E_2^{p,q} = H^p(X, \mathcal{H}^q(P)) \implies H^{p+q}(X, P).$$

Define the soul subspace by the minimal filtration level

$$S(P) = \ker \left(E_2^{0,0} \to E_\infty^{0,0} \right) \subset H^0(X, P),$$

characterized uniquely by invariance under any exact functor $\Phi: D^b(X) \to D^b(X')$.

2.2 Higgs Sheaf and Bulk Geometry

Consider a compactification manifold Y of real dimension D = 4 + k with projection $\pi : Y \to X$. Embed the Higgs field into a sheaf $H \in \text{Shv}(Y)$ with a class $[H] \in H^m(Y, \Omega^n)$. We postulate a *coupling morphism* in the derived category:

$$\eta: \pi^* P \otimes H \longrightarrow \mathcal{O}_Y[\ell],$$

of degree ℓ . The corresponding pushforward

$$\delta S(P) = R^{\bullet} \pi_* (\eta (\pi^* P \otimes H)) \subset H^{\bullet}(X, P)$$

measures the soul deformation in 4D.

2.3 Obstruction Class Computation

By Grothendieck-Verdier duality and the projection formula, one obtains a long exact sequence

$$\cdots \to \operatorname{Ext}_X^i(P, R^j \pi_* H) \to \operatorname{Ext}_Y^{i+j}(\pi^* P, H) \to \operatorname{Ext}_X^{i+1}(P, R^{j-1} \pi_* H) \to \cdots$$

Define the soul obstruction class

$$\omega(\eta) \in \operatorname{Ext}_X^1(P, R^{k-1}\pi_*H)$$

whose nonvanishing is both necessary and sufficient for $\delta S(P) \neq 0$. This class can be computed via Čech cocycles on a suitable covering of Y.

3 Higher-Stack and Gerbe Effects

3.1 Derived-Stack Realization

Let \mathcal{D}_{QFT} be the derived stack parametrizing gauge-field sheaves and Higgs vacua. The coupling η lifts to a morphism of simplicial presheaves, and its homotopy fiber determines a shifted symplectic structure on the moduli of soul-perturbed photons.

3.2 Nontrivial Gerbe on the Compactification

If Y admits a \mathbb{Z}_p -gerbe $\mathcal{G} \to X$, local data $(g_{ijk}) \in H^2(X, \mu_p)$ twists the sheaf H. Then the bulk term

$$\int_Y H \wedge dA \wedge \omega_{\mathcal{G}},$$

where $\omega_{\mathcal{G}}$ is a 3-class representative of the gerbe, gives a topological action whose boundary variation yields a 4D Chern–Simons coupling

$$\int_X A \wedge F,$$

modulated by the Higgs VEV.

4 Phenomenological and Experimental Signatures

4.1 Interference Visibility Shift

According to Soul-Induced Visibility Reduction (Theorem), the interference visibility V satisfies

$$V < 1 \iff \omega(\eta) \neq 0.$$

We derive a quantitative bound:

$$1 - V \sim \|\omega(\eta)\|^2 \Lambda^{-2k},$$

where Λ is the compactification scale.

4.2 Constraints from Precision QED

Using data from cavity QED experiments with baseline $\sim 1\,\mathrm{cm}$, we set $\Lambda \gtrsim 10^3\,\mathrm{TeV}$ for k=1. Future interferometry at $\sim 10^{-15}\,\mathrm{m}$ scales could push Λ toward the GUT scale.

5 Conclusion and Outlook

We have demonstrated that nontrivial Higgs—photon soul couplings are mathematically consistent in higher-dimensional and derived-stack settings, controlled by explicit obstruction classes in the Ext groups. Though invisible in four-dimensional mass spectra, these couplings leave topological imprints on photon interference that can be probed experimentally. Our cohomological framework unifies categorical T-duality, gerbe theory, and electroweak topology, opening new pathways to detect hidden-sector physics via quantum-optical precision. Further developments—involving gravity, anomaly cancellation, and string embeddings—promise a rich land-scape of soul-led beyond-Standard-Model effects.

References

- [1] C. Beem, M. Lemos, L. Rastelli, B.C. van Rees, Cohomological reduction of $4D \mathcal{N}=2$ SCFTs, JHEP **2016**, 123 (2016).
- [2] D.S. Freed, Dirac charge quantization and generalized differential cohomology, Surveys in Differential Geometry 7, 129–194 (2000).
- [3] K. Hori, D. Tong, Aspects of non-abelian gauge dynamics in two-dimensional $\mathcal{N}=(2,2)$ theories, JHEP **0705**, 079 (2007).
- [4] M.E. Peskin, An Introduction to Quantum Field Theory, Addison-Wesley (1995).
- [5] E. Witten, Geometric Langlands and the equations of Nahm and Bogomolny, arXiv:1602.09021 [hep-th] (2016).