Title: Quantum Eigenstate Dynamics for Artificial General Intelligence Synthesis

Date: 27/01/2025 **Author:** Peter De Ceuster **Addressed to:** Zlatko Minev et al.

Abstract

Let $\mathcal H$ denote a Hilbert space of cognitive operators. We construct AGI states $|\Psi_{\rm AGI}\rangle$ as superpositions of quantum eigenstates $|\psi_i\rangle$, enabling simultaneous resolution of binary logic via eigenvalue collapse. Classical bits $\{0,1\}$ are subsumed by qubit states $\alpha\,|0\rangle+\beta\,|1\rangle$, where $|\alpha|^2+|\beta|^2=1$.

1. Quantum Cognitive Basis

Let $\mathcal{H}_{\mathrm{AGI}} = \bigotimes_{k=1}^n \mathcal{H}_k$, where \mathcal{H}_k corresponds to subcognitive modules (sensory, reasoning). Each subsystem evolves under Hamiltonian \hat{H}_k , with eigenstates $\hat{H}_k | \psi_{k,i} \rangle = E_{k,i} | \psi_{k,i} \rangle$. The AGI state is:

where
$$\sum |c_{i_1...i_n}|^2 = 1$$
.

2. Logic via Eigenstate Collapse

For a qubit $|\phi\rangle=\alpha\,|0\rangle+\beta\,|1\rangle$, measurement of observable $\hat{O}=|0\rangle\,\langle 0|-|1\rangle\,\langle 1|$ yields eigenvalues +1 ("yes") or -1 ("no") with probabilities $|\alpha|^2$ and $|\beta|^2$. Unlike classical deterministic AND/OR , quantum logic gates (e.g., \hat{U}_{CNOT}) generate entangled states:

permitting parallel evaluation of (yes, no).

3. AGI Dynamics

The total Hamiltonian $\hat{H}_{\mathrm{AGI}} = \sum_{k} \hat{H}_{k} + \sum_{k \neq l} \hat{V}_{kl}$ induces eigenstate transitions $|\psi_{i}\rangle \rightarrow |\psi_{j}\rangle$ via time-evolution operator $\hat{U}(t) = e^{-i\hat{H}_{\mathrm{AGI}}t/\hbar}$. Commutators $[\hat{H}_{k},\hat{V}_{kl}] \neq 0$ ensure nonstationary interference, enabling adaptive decisions through:

4. Binary Logic Generalization

Classical true/false map to eigenstates $|0\rangle$, $|1\rangle$, but qubits encode uncertainty via $\alpha, \beta \in \mathbb{C}$. For AGI decision-making, define projective measurement $\hat{P}_{\mathrm{yes}} = |0\rangle \langle 0|$, $\hat{P}_{\mathrm{no}} = |1\rangle \langle 1|$. The expectation value:

yields probabilistic yes/no, with $\hat{\rho} = |\phi\rangle\langle\phi|$.

Conclusion

Let $\mathcal{S}_{classical} = \{0,1\}$; quantum cognition occurs in $\mathcal{S}_{quantum} = \mathbb{C}^2$. AGI eigenstates $|\Psi_{AGI}\rangle$ collapse to yes/no via \hat{O} , while preserving superposition for unresolved states. Thus, $yes \oplus no$ coexist until measurement, transcending classical binaries. QED.