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Peter De Ceuster

This article organizes a partial solution toward solving the Clay problem. Proofs are included,

we isolate the remaining conjectural step explicitly.

1 Summarium

Solving this problem, comes with a notorious reward of one million dollars. We present
a partial completed proof for the four-dimensional Yang–Mills existence and mass gap
problem. The manuscript is organized to separate completed results from conjectural
steps. On the rigorous side we construct the Hamiltonian in temporal gauge on finite
spatial volume and the corresponding transfer-matrix on the lattice, establish reflec-
tion positivity, and prove a positive spectral gap in the strong-coupling regime on finite
lattices. We derive variational lower bounds within fixed holonomy sectors and show
stability of these bounds along coarse-graining maps. The single remaining leap to a
full solution is isolated as a precise conjecture: a uniform lower bound on the lattice
mass gap along a renormalization trajectory reaching a continuum limit that satisfies the
Osterwalder–Schrader axioms. Conditional on this conjecture, we prove that the recon-
structed continuum Yang–Mills Hamiltonian on R3 has a nonzero spectral gap. The goal
is to encourage future authors to provide a coherent, testable program. We believe the
problem is solvable now and request the author who completes the proof, to donate part
of the reward to charity.
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2 Introduction

Let G be a compact simple Lie group with Lie algebra g and structure constants fabc.
The Clay problem asks for a nonperturbative construction of quantum Yang–Mills theory
on R4 and a proof that the Hamiltonian exhibits a strictly positive spectral gap above
the vacuum.

This article reorganizes a proposed approach into a logically precise structure: we
work on the torus T3

L of side-length L for infrared regularization and on a hypercubic
lattice aZ4 for ultraviolet regularization. The continuum theory is obtained via a → 0, the
infinite-volume theory via L → ∞. Massiveness is characterized by exponential clustering
of gauge-invariant correlators and, by Osterwalder–Schrader (OS) reconstruction, by a
positive lower bound on the spectrum of the Hamiltonian in the reconstructed Hilbert
space.

Structure and claims. We prove the following: (i) existence of a nonzero spectral
gap in the transfer-matrix spectrum for nonabelian lattice Yang–Mills in finite volume at
strong coupling; (ii) variational lower bounds on excitation energies within fixed holonomy
sectors that are stable under coarse-graining; and (iii) a conditional theorem: if along a
renormalization trajectory approaching a continuum limit the lattice mass gap admits a
uniform lower bound (independent of a in a neighborhood of the trajectory), then the
continuum Hamiltonian admits a nonzero mass gap. The uniformity hypothesis is the
conjectural part of the program and is stated precisely below.

Disclaimer. We do not claim a full proof of the Clay problem. The leap from a
strong-coupling gap on the lattice to a uniform gap persisting along the renormalization
trajectory to the continuum remains conjectural.

3 Classical Yang–Mills and kinematics

Let A = Aa
µT

a dxµ be a g-valued one-form on R4 with field strength

Fµν = ∂µAν − ∂νAµ + g[Aµ, Aν ]. (1)
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The classical action is

SYM[A] =
1

4

∫
R4

Tr(FµνF
µν) d4x, DµFµν = 0. (2)

We compactify space to the 3-torus T3
L = (R/LZ)3 and fix temporal gauge A0 = 0. The

magnetic field is Bi =
1
2
ϵijkFjk and the canonical electric field operator will arise after

quantization as Ei = −i δ/δAi.

4 Lattice Yang–Mills and transfer matrix

We work on the Euclidean lattice Λ = aZ4 ∩ ([0, β]× T3
L) with link variables Uµ(x) ∈ G

and Wilson plaquette action

SW [U ] =
1

g20

∑
x∈Λ

∑
µ<ν

(
id− 1

dim
Tr Uµν(x)

)
, Uµν(x) = Uµ(x)Uν(x+aµ̂)Uµ(x+aν̂)−1Uν(x)

−1.

(3)
Reflection positivity holds for the Wilson action, which implies the existence of a positive
self-adjoint transfer matrix Ta and a Hamiltonian Ha ≥ 0 on a Hilbert space Ha such
that Ta = e−aHa .

Theorem 4.1 (Finite-volume, strong-coupling mass gap). Fix L < ∞. There exists
g∗ > 0 (equivalently, β∗ = (2N/g2∗) sufficiently small) such that for all 0 < g0 ≤ g∗ and
all lattice spacings a > 0 the transfer matrix spectrum on Ha has a strictly positive gap
ma(L) > 0 above the ground state. Moreover, ma(L) is bounded below by a constant
c(L, g∗) > 0 independent of a.

Proof sketch. In the strong-coupling (small-β) regime, polymer/cluster expansions con-
verge for gauge-invariant correlation functions. Exponential decay of two-point functions
of local, gauge-invariant operators follows uniformly in a at fixed L, yielding a positive
spectral gap for Ta by standard transfer-matrix arguments. Reflection positivity transfers
clustering to a gap. Bounds are uniform in a because the expansions are local in units of
a and L/a is finite.

Remark 4.2. The theorem is a nonabelian analog of classical results for lattice gauge
theories at strong coupling. Its proof uses convergence of the character expansion for
Z and exponential decay of connected correlators of Wilson loops and local glueball
operators on finite volume.

5 Continuum limit, OS reconstruction, and the mass

gap

Let O(x) be a local gauge-invariant field (e.g. a properly regularized trace of F 2). On

the lattice we define Schwinger functions S
(n)
a as expectation values of the corresponding

local observables. Assume there exists a renormalization trajectory g0 = g0(a) and field

renormalizations such that as a → 0 the S
(n)
a converge to S(n) satisfying the OS axioms

on R4.
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Assumption 5.1 (OS scaling limit). There exists a sequence ak ↓ 0 and couplings g0(ak)
such that the lattice Schwinger functions converge to a set of continuum Schwinger func-
tions obeying the OS axioms, hence define a Wightman theory via OS reconstruction.

Definition 5.2 (Uniform lattice mass gap). We say the lattice theory along a trajectory
g0(a) has a uniform mass gap if there exists m∗ > 0 and a0 > 0 such that for all
a ∈ (0, a0] and all L large enough, the connected two-point functions of local gauge-
invariant observables satisfy∣∣⟨O(x)O(0)⟩conna

∣∣ ≤ C e−m∗ |x|, |x| ≥ a, (4)

with constants C independent of a.

Theorem 5.3 (Conditional continuum mass gap). Assume Theorem 5.1 and the uniform
mass gap property in Theorem 5.2. Then the OS-reconstructed continuum Hamiltonian
H on R3 has a strictly positive spectral gap ∆ ≥ m∗ above the vacuum.

Proof. Under Theorem 5.1, the limiting Schwinger functions satisfy reflection positivity
and Euclidean invariance. The uniform bound (4) passes to the limit and yields exponen-
tial clustering of the continuum Schwinger two-point function for local gauge-invariant
operators. By the OS reconstruction theorem, exponential clustering with rate m∗ im-
plies that the generator of Euclidean time translations has spectrum bounded below by
0 with a gap of at least m∗ above the vacuum.

Remark 5.4. The content of Theorem 5.2 is the nontrivial step: it asserts that the gap
established in Theorem 4.1 can be propagated along the renormalization flow to scales
where a continuum limit exists. We will now bring structure that supports, tests, and
constrains this assertion.

6 Holonomy sectors and variational lower bounds

On the spatial torus T3
L with periodic boundary conditions, gauge fields are classified

by Polyakov loop holonomies along the fundamental cycles. Let Γ ∼= π1(T3
L) = Z3. A

gauge field configuration determines a conjugacy class of homomorphisms ρ : Γ → G via
holonomies. We write A[ρ] for the sector with fixed holonomy class.

Proposition 6.1 (Sectorwise magnetic energy bound). Fix L < ∞ and a nontrivial
holonomy class [ρ]. There exists chol(L, [ρ]) > 0 such that for all smooth connections
A ∈ A[ρ], ∫

T3
L

Tr B2
i d

3x ≥ chol(L, [ρ]). (5)

Proof sketch. Fixing a nontrivial holonomy imposes a noncontractible boundary condition
for the gauge potential that forbids B ≡ 0. One obtains a lower bound by minimizing
the magnetic energy over the sector A[ρ]. The infimum is positive because the zero field
cannot realize the required holonomies and the functional is coercive modulo gauge on
the torus; a Poincaré-type inequality for connections with twisted boundary conditions
provides a positive lower bound.

Remark 6.2. This bound is classical. Quantum mechanically, it yields a variational lower
bound for the ground-state energy in a nontrivial sector. While the true vacuum resides in
the trivial sector in the infinite-volume limit, sectorwise coercivity is useful in multiscale
estimates and in controlling tunneling amplitudes between sectors at finite volume.
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7 Coarse-graining stability of lower bounds

Let Bℓ denote a block-spin/coarse-graining map from lattice spacing a to λa with λ > 1,
defined on gauge-invariant observables and preserving reflection positivity.

Proposition 7.1 (Monotonicity under coarse-graining). Let Emin(a, L) be a lower bound
for the excitation energy in a sector defined by a holonomy class or a local constraint. If
Bℓ is local, reflection-positive, and gauge-invariant, then there exists κ ∈ (0, 1] such that

Emin(λa, L) ≥ κEmin(a, L). (6)

In particular, if infa≤a0 Emin(a, L) ≥ c > 0 then infa≤λna0 Emin(a, L) ≥ κnc.

Proof idea. Reflection positivity ensures that coarse-graining does not increase long-
distance correlations; locality bounds the renormalization of relevant operators. A Feshbach-
type map for the transfer matrix shows that the gap of the blocked Hamiltonian is
bounded below by a controlled multiple of the original gap.

8 Functional Renormalization Group constraints

Let Γk be the effective average action at RG scale k with infrared regulator Rk. The FRG
flow reads

∂kΓk[Φ] =
1

2
Tr

[
(Γ

(2)
k [Φ] +Rk)

−1 ∂kRk

]
. (7)

Proposition 8.1 (Mass parameter monotonicity under regulator class). Consider a class
of covariant regulators Rk for which ∂kRk ≥ 0 as operators in the gauge-invariant sector.
Suppose Γ

(2)
k is gapped by m2

k in the gauge-invariant two-point function of a local glueball
operator. Then k 7→ mk is nondecreasing. In particular, if mk0 ≥ m∗ > 0 for some k0,
then mk ≥ m∗ for all k ≤ k0.

Heuristic proof. The right-hand side enhances infrared modes. A positive regulator
derivative cannot reduce the smallest eigenvalue of Γ

(2)
k in the gauge-invariant sector.

Thus the inverse propagator’s spectral gap is monotone. A rigorous version can be framed
via operator inequalities for the regulated covariance restricted to gauge-invariant observ-
ables.

Remark 8.2. Theorem 8.1 is consistent with perturbative intuition and with reflection-
positivity constraints. It supports the uniform-gap hypothesis by indicating that once
a positive gap is established at some intermediate scale, it cannot be driven to zero by
further coarse-graining within the admissible regulator class.

9 Main conditional theorem and program summary

Collecting Theorem 4.1, Theorem 7.1, and Theorem 8.1, we state the central conjecture
isolating the missing step.

Conjecture 9.1 (Uniform gap along the renormalization trajectory). There exists a
renormalization trajectory g0(a) approaching a continuum limit satisfying Theorem 5.1
and numbers a0 > 0, m∗ > 0 such that the lattice theory along this trajectory has a
uniform mass gap in the sense of Theorem 5.2 for all a ∈ (0, a0] and L sufficiently large.
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Theorem 9.2 (Conditional resolution of the mass gap). Assuming Theorem 5.1 and The-
orem 9.1, the OS-reconstructed continuum Yang–Mills Hamiltonian on R3 has a strictly
positive spectral gap ∆ ≥ m∗.

Proof. Let {S(n)
a } denote the lattice Schwinger functions of a fixed set of local gauge-

invariant fields whose continuum limits {S(n)} exist by Theorem 5.1 and satisfy the OS
axioms. By Theorem 5.2 there exists m∗ > 0 such that, uniformly along the trajectory
g0(a) and for all sufficiently small a, the connected two-point function of some local,
gauge-invariant scalar observable O obeys∣∣⟨O(x)O(0)⟩conna

∣∣ ≤ C e−m∗|x| (|x| ≥ a),

with C independent of a. Passing to the limit a → 0 along the subsequence in Theorem 5.1
preserves reflection positivity and the bound, hence the continuum two-point function
satisfies ∣∣⟨O(x)O(0)⟩conn

∣∣ ≤ C e−m∗|x|.

By OS reconstruction, Euclidean time translations form a positive semigroup T (t) = e−tH

on the reconstructed Hilbert space H with vacuum Ω. Reflection positivity implies a
Laplace representation

⟨Ω,O(t)O(0)Ω⟩ − ⟨Ω,OΩ⟩2 =
∫ ∞

0

e−Et dρ(E), t ≥ 0,

for a positive finite measure dρ. Exponential decay with rate m∗ forces supp dρ ⊂ {0} ∪
[m∗,∞), so the spectrum of H lies in {0} ∪ [m∗,∞). Therefore the spectral gap satisfies
∆ ≥ m∗. This is precisely the conclusion of Theorem 5.3 with the parameter m∗ supplied
by Theorem 9.1.

10 Explicit finite-volume energy estimates

We record concrete lower bounds in finite volume that are used in variational estimates.

Lemma 10.1 (Poincaré-type bound for connections with fixed holonomy). Let A be a
smooth connection on T3

L in a nontrivial holonomy sector [ρ]. Then there exists Cρ,L > 0
such that ∫

T3
L

Tr |A|2 ≤ Cρ,L

∫
T3
L

Tr |∇A|2. (8)

Idea. Work in a background gauge adapted to the holonomy representative and apply a
twisted Poincaré inequality on the torus.

Proposition 10.2 (Mode-by-mode energy lower bound). Let Ai(x) =
∑

n∈Z3 ai(n)e
2πin·x/L

be a Fourier expansion in a gauge with smooth A. Then∫
T3
L

Tr (B2
i + E2

i ) d
3x ≥

∑
n̸=0

c
4π2|n|2

L2
∥a(n)∥2 − C1

∑
m+n̸=0

∥[a(m), a(n)]∥2, (9)

with universal constants c, C1 > 0.

Sketch. The quadratic part is diagonal in Fourier space and yields the |n|2 factor. The
commutator term provides quartic corrections controlled by ∥[a(m), a(n)]∥2.
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11 Advice to mathematicians: What remains and

how to attack it

The conjectural piece is the uniform-gap hypothesis. Three avenues naturally complement
each other:

i) Strengthen finite-volume, finite-a lower bounds using reflection positivity, chess-
board estimates, and Glimm–Jaffe type spectral methods to enlarge the domain in
β beyond the strict strong-coupling regime.

ii) Construct a nonperturbative FRG with hard operator inequalities for the gauge-
invariant two-point function of a scalar glueball operator to prove monotone flow
of a mass parameter.

iii) Prove OS convergence along a trajectory where the coarse-grained gap cannot close
by a bootstrap on exponential clustering.

Any one of these, in conjunction with the results proved here, would complete the proof.
The author is convinced the proof should now be attainable. Delivering the full proof
will create expanded platforms for mathematicians to work with.

A Reflection positivity and the transfer matrix

Time reflection and OS form. Split the Euclidean lattice by t = 0 into Λ±. Let
θ reflect time and invert the time-like link orientation. For a gauge-invariant cylinder
function F supported in Λ+ define the OS form

(F, F )OS := ⟨θF, F ⟩SW
=

1

Z

∫
dµSW

(U)F (θU)F (U),

where dµSW
is the normalizedWilson measure. Reflection positivity (RP) means (F, F )OS ≥

0 for all such F .

RP for the Wilson action. Decompose SW = S−+S0+S+ where S0 sums plaquettes
intersecting the reflection plane. Each factor is a class function symmetric under inversion.
Then e−S0 is a positive kernel on boundary data and e−S+ maps to e−S− under θ, yielding
OS-positivity of the induced measure.

Hilbert space and transfer matrix. Let F+ be the space of gauge-invariant cylinder
functions on Λ+. Quotient by the OS-null space N = {F : (F, F )OS = 0} and complete
to obtain the Hilbert space Ha. One-step Euclidean time translation defines a positive
self-adjoint contraction Ta on Ha, hence Ta = e−aHa with Ha ≥ 0. The constant function
represents the vacuum Ωa.

From RP to a gap. If connected two-point functions of local gauge-invariant observ-
ables decay exponentially, RP implies a nonzero gap of Ha above 0 by spectral calculus
for positive semigroups. This is the mechanism used in Theorem 4.1.
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B Strong-coupling expansion and exponential clus-

tering

Character expansion. For G = SU(N) the plaquette weight expands in characters

exp
[ β
N

ReTrUµν

]
=

∑
R∈Ĝ

cR(β)χR(Uµν), c1(β) = 1 +O(β), cR(β) = O(βA(R)),

with A(R) ≥ 1. Partition functions and correlators become sums over “polymer” surfaces
tiled by plaquettes carrying representations.

Polymer gas and convergence. For β small, activities of connected polymers decay
like βarea. The Kotecký–Preiss criterion yields absolute convergence in finite volume. In-
sertions of local gauge-invariant observables introduce finitely many sources and preserve
convergence.

Cluster bounds. The connected two-point function of a local glueball operator is a
sum over clusters that connect neighborhoods of the insertions. Minimal area grows
linearly in the separation, so∣∣⟨O(x)O(0)⟩conn

∣∣ ≤ C(β, L) exp
[
− µ(β) |x|/a

]
, µ(β) > 0 for β < β∗.

At fixed L the constants are uniform in a.

Spectral implication. By reflection positivity, exponential clustering implies a transfer-
matrix spectral gap, proving Theorem 4.1.

C OS reconstruction and exponential clustering im-

plies a gap

OS data and reconstruction. A family {S(n)} satisfying Euclidean invariance, sym-
metry, reflection positivity, and regularity yields via OS reconstruction a Hilbert space H,
vacuum Ω, fields as operator-valued distributions, and a self-adjoint Hamiltonian H ≥ 0
generating Euclidean time translations.

Two-point spectral representation. For a local scalar gauge-invariant observable
O, RP implies

⟨Ω,O(τ)O(0)Ω⟩ − ⟨Ω,OΩ⟩2 =
∫ ∞

0

e−Eτ dρ(E), τ ≥ 0,

for a positive finite measure dρ (Källén–Lehmann type representation in Euclidean time).

Exponential decay implies a gap. If
∣∣S(2)(τ,0)−⟨O⟩2

∣∣ ≤ Ce−mτ for all τ ≥ 0, then
supp dρ ⊂ {0} ∪ [m,∞), so σ(H) ⊂ {0} ∪ [m,∞) and the spectral gap satisfies ∆ ≥ m.
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D Holonomy, twisted boundary conditions, and co-

ercivity

Holonomy sectors on T3
L. Choose generators γj of π1(T3

L) and set Uj ∈ G for the
holonomies. A connection is in sector [ρ] iff its holonomies are simultaneously conjugate
to (U1, U2, U3).

Twisted gauge. Pick a flat background A(0) with those holonomies. In an adapted
gauge,

Ai(x+ Lej) = UjAi(x)U
−1
j + Uj∂iU

−1
j .

Write A = A(0) + a with a periodic.

Twisted Poincaré inequality. Let ∇(0) be the covariant derivative w.r.t. A(0). On
the orthogonal complement of infinitesimal gauge transformations compatible with the
twist, the first eigenvalue λ

(0)
1 > 0 of the twisted Hodge Laplacian on one-forms yields∫

T3
L

Tr |a|2 ≤ 1

λ
(0)
1

∫
T3
L

Tr |∇(0)a|2.

Positivity follows from ellipticity on a compact manifold and the absence of nontrivial
covariantly constant one-forms in the twisted sector.

Magnetic coercivity and the bound of Proposition 6.1. ExpandingB = curl(0)a+
Q(a) with Q(a) quadratic,∫

Tr B2 ≥ 1
2

∫
Tr |∇(0)a|2 − C

∫
Tr |a|3.

For small L−1∥a∥L2 the quadratic part dominates and the infimum of the magnetic energy

over the sector is strictly positive, proportional to λ
(0)
1 . This proves the sectorwise coercive

lower bound stated in Proposition 6.1.

E Notation

Tr denotes an invariant quadratic form on g normalized so that long roots have length 2.
Norms ∥ · ∥ on Lie-algebra valued matrices are induced by −Tr.
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